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3.1 Financial markets and arbitrage

In this section we consider a very simple setup with no uncertainty. There
are three reasons that we do this:

First, the terminology of bond markets is conveniently introduced in this
setting, for even if there were uncertainty in our model, bonds would be
characterized by having payments whose size at any date are constant and
known in advance.

Second, the classical net present value (NPV) rule of capital budgeting is
easily understood in this framework.

And finally, the mathematics introduced in this section will be extremely
useful in later chapters as well.

A note on notation: If v ∈ R
N is a vector the following conventions for

“vector positivity” are used:

• v ≥ 0 (“v is non-negative”) means that all of v ′s coordinates are non-
negative. ie. ∀i: vi ≥ 0.

• v > 0 (“v is positive” ) means that v ≥ 0 and that at least one coor-
dinate is strictly positive, ie. ∀i: vi ≥ 0 and ∃i: vi > 0, or differently
that v ≥ 0 and v 6= 0.

• v � 0 (“v is strictly positive”) means that every coordinate is strictly
positive, ∀i: vi > 0. This (when v is N -dimensional) we will sometimes
write as v ∈ R

N
++. (This saves a bit of space, when we want to indicate

both strict positivity and the dimension of v.)
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arbitrage
opportunity

Throughout we use v> to denote the transpose of the vector v. Vectors
without the transpose sign are always thought of as column vectors.

We now consider a model for a financial market (sometimes also called a
security market or price system; individual components are then referred to
as securities) with T + 1 dates: 0, 1, . . . , T and no uncertainty.

Definition 1 A financial market consists of a pair (π, C) where π ∈ R
N

and C is an N × T−matrix.

The interpretation is as follows: By paying the price πi at date 0 one
is entitled to a stream of payments (ci1, . . . , ciT ) at dates 1, . . . , T. Negative
components are interpreted as amounts that the owner of the security has
to pay. There are N different payment streams trading. But these payment
streams can be bought or sold in any quantity and they may be combined in
portfolios to form new payment streams:

Definition 2 A portfolio θ is an element of R
N . The payment stream gen-

erated by θ is C>θ ∈ R
T . The price of the portfolio θ at date 0 is π · θ

(= π>θ = θ>π).

Note that allowing portfolios to have negative coordinates means that we
allow securities to be sold. We often refer to a negative position in a security
as a short position and a positive position as a long position. Short positions
are not just a convenient mathematical abstraction. For instance when you
borrow money to buy a home, you take a short position in bonds.

Before we even think of adopting (π, C) as a model of a security market
we want to check that the price system is sensible. If we think of the financial
market as part of an equilibrium model in which the agents use the market
to transfer wealth between periods, we clearly want a payment stream of
(1, . . . , 1) to have a lower price than that of (2, . . . , 2). We also want payment
streams that are non-negative at all times to have a non-negative price. More
precisely, we want to rule out arbitrage opportunities in the security market
model:

Definition 3 A portfolio θ is an arbitrage opportunity (of type 1 or 2) if it
satisfies one of the following conditions:

1. π · θ = 0 and C>θ > 0.

2. π · θ < 0 and C>θ ≥ 0.

Alternatively, we can express this as (−π · θ, C>θ) > 0.
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The interpretation is that it should not be possible to form a portfolio at
zero cost which delivers non-negative payments at all future dates and even
gives a strictly positive payment at some date. And it should not be possible
to form a portfolio at negative cost (i.e. a portfolio which gives the owner
money now) which never has a negative cash flow in the future.
Usually type 1 arbitrages can be transformed into type 2. arbitrages, and
vice versa. For instance, if the exists a ci > 0, then we easily get from 2 to 1
But there is not mathematical equivalence (take π = 0 or C = 0 to see this).

Definition 4 The security market is arbitrage-free if it contains no arbitrage
opportunities.

To give a simple characterization of arbitrage-free markets we need a
lemma which is very similar to Farkas’ theorem of alternatives proved in
Matematik 2OK using separating hyperplanes:

Lemma 1 (Stiemke’s lemma) Let A be an n × m−matrix: Then precisely
one of the following two statements is true:

1. There exists x ∈ R
m
++ such that Ax = 0.

2. There exists y ∈ R
n such that y>A > 0.

We will not prove the lemma here (it is a very common exercise in con-
vexity/linear programming courses, where the name Farkas is encountered).
But it is the key to our next theorem:

Theorem 2 The security market (π, C) is arbitrage-free if and only if there
exists a strictly positive vector d ∈ R

T
++ such that π = Cd.

In the context of our security market the vector d will be referred to as
a vector of discount factors. This use of language will be clear shortly.
Proof. Define the matrix

A =




−π1 c11 c12 · · · c1T
−π2 c21 c22 · · · c2T

...
...

...
. . .

...
−πN cN1 cN2 · · · cNT




First, note that the existence of x ∈ R
T+1
++ such that Ax = 0 is equivalent

to the existence of a vector of discount factors since we may define

di =
xi
x0

i = 1, . . . , T.
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complete market Hence if the first condition of Stiemke’s lemma is satisfied, a vector d exists
such that π = Cd.The second condition corresponds to the existence of an
arbitrage opportunity: If y>A > 0 then we have either

(y>A)1 > 0 and (y>A)i ≥ 0 i = 1, . . . , T + 1

or

(y>A)1 = 0 , y>A ≥ 0 and (y>A)i > 0 some i ∈ {2, . . . , T + 1}

and this is precisely the condition for the existence of an arbitrage opportu-
nity. Now use Stiemke’s lemma.

Another important concept is market completeness (in Danish: Kom-
plethed or fuldstændighed).

Definition 5 The security market is complete if for every y ∈ R
T there

exists a θ ∈ R
N such that C>θ = y.

In linear algebra terms this means that the rows of C span R
T , which can

only happen if N ≥ T , and in our interpretation it means that any desired
payment stream can be generated by an appropriate choice of portfolio.

Theorem 3 Assume that (π, C) is arbitrage-free. Then the market is com-
plete if and only if there is a unique vector of discount factors.

Proof. Since the market is arbitrage-free we know that there exists d � 0
such that π = Cd. Now if the model is complete then R

T is spanned by the
columns of C>, ie. the rows of C of which there are N . This means that C
has T linearly independent rows, and from basic linear algebra (look around
where rank is defined) it also has T linearly independent columns, which is
to say that all the columns are independent. They therefore form a basis for
a T -dimensional linear subspace of R

N (remember we must have N ≥ T to
have completeness), ie. any vector in this subspace has unique representation
in terms of the basis-vectors. Put differently, the equation Cx = y has at
most one solution. And in case where y = π, we know there is one by absence
of arbitrage. For the other direction assume that the model is incomplete.
Then the columns of C are linearly dependent, and that means that there
exists a vector d̃ 6= 0 such that 0 = Cd̃. Since d � 0, we may choose ε > 0
such that d + εd̃ � 0.Clearly, this produces a vector of discount factors
different from d.
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3.2 Zero coupon bonds and the term struc-

ture

Assume throughout this section that the model (π, C) is complete and arbitrage-
free and let d> = (d1, . . . , dT ) be the unique vector of discount factors. Since
there must be at least T securities to have a complete model, C must have
at least T rows. On the other hand if C has exactly T linearly independent
rows, then adding other securities to C will not add any more possibilities of
wealth transfer to the market. Hence we can assume that C is am invertible
T × T matrix.

Definition 6 The payment stream of a zero coupon bond with maturity t is
given by the t′th unit vector et of R

T .

Next we see why the words discount factors were chosen:

Proposition 4 The price of a zero coupon bond with maturity t is dt.

Proof. Let θt be the portfolio such that C>θt = et. Then

π>θt = (Cd)>θt = d>C>θt = d>et = dt.

Note from the definition of d that we get the value of a stream of payments c
by computing

∑T
t=1 ctdt. In other words, the value of a stream of payments is

obtained by discounting back the individual components. There is nothing
in our definition of d which prevents ds > dt even when s > t, but in the
models we will consider this will not be relevant: It is safe to think of dt as
decreasing in t corresponding to the idea that the longer the maturity of a
zero coupon bond, the smaller is its value at time 0.

From the discount factors we may derive/define various types of interest
rates which are essential in the study of bond markets.:

Definition 7 (Short and forward rates.) The short rate at date 0 is given
by

r0 =
1

d1
− 1.

The (one-period) time t- forward rate at date 0, is equal to

f(0, t) =
dt
dt+1

− 1,

where d0 = 1 by convention.
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yield to maturity

term structure of
interest rates

The interpretation of the short rate should be straightforward: Buying 1
d1

units of a maturity 1 zero coupon bond costs 1
d1
d1 = 1 at date 0 and gives a

payment at date 1 of 1
d1

= 1 + r0. The forward rate tells us the rate at which
we may agree at date 0 to borrow (or lend) between dates t and t+1. To see
this, consider the following strategy at time 0 :

• Sell 1 zero coupon bond with maturity t.

• Buy dt

dt+1
zero coupon bonds with maturity t+ 1.

Note that the amount raised by selling precisely matches the amount used
for buying and hence the cash flow from this strategy at time 0 is 0. Now
consider what happens if the positions are held to the maturity date of the
bonds: At date t the cash flow is then −1 and at date t + 1 the cash flow is
dt

dt+1
= 1 + f(0, t).

Definition 8 The yield (or yield to maturity) at time 0 of a zero coupon
bond with maturity t is given as

y(0, t) =

(
1

dt

) 1
t

− 1.

Note that
dt(1 + y(0, t))t = 1.

and that one may therefore think of the yield as an ’average interest rate’
earned on a zero coupon bond. In fact, the yield is a geometric average of
forward rates:

1 + y(0, t) = ((1 + f(0, 0)) · · · (1 + f(0, t− 1)))
1
t

Definition 9 The term structure of interest rates (or the yield curve) at
date 0 is given by (y(0, 1), . . . , y(0, T )).

Note that if we have any one of the vector of yields, the vector of forward
rates and the vector of discount factors, we may determine the other two.
Therefore we could equally well define a term structure of forward rates and
a term structure of discount factors. In these notes unless otherwise stated,
we think of the term structure of interest rates as the yields of zero coupon
bonds as a function of time to maturity. It is important to note that the term
structure of interest rate depicts yields of zero coupon bonds. We do however
also speak of yields on securities with general positive payment steams:
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Definition 10 The yield (or yield to maturity) of a security c> = (c1, . . . , cT )
with c > 0 and price π is the unique solution y > −1 of the equation

π =
T∑

i=1

ci
(1 + y)i

.

Example 3 (Compounding Periods) In most of the analysis in this chap-
ter the time is “stylized”; it is measured in some unit (which we think of and
refer to as “years”) and cash-flows occur at dates {0, 1, 2, . . . , T}. But it
is often convenient (and not hard) to work with dates that are not integer
multiples of the fundamental time-unit. We quote interest rates in units of
years−1 (“per year’), but to any interest rate there should be a number, m,
associated stating how often the interest is compounded. By this we mean
the following: If you invest 1 $ for n years at the m-compounded rate rm you
end up with (

1 +
rm
m

)mn
. (3.1)

The standard example: If you borrow 1$ in the bank, a 12% interest rate
means they will add 1% to you debt each month (i.e. m = 12) and you
will end up paying back 1.1268 $ after a year, while if you make a deposit,
they will add 12% after a year (i.e. m = 1) and you will of course get 1.12$
back after one year. If we keep rm and n fixed in (3.1) (and then drop the
m-subscript) and and let m tend to infinity, it is well known that we get:

lim
m→∞

(
1 +

r

m

)mn
= enr,

and in this case we will call r the continuously compounded interest rate. In
other words: If you invest 1 $ and the continuously compounded rate rc for
a period of length t, you will get back etrc . Note also that a continuously
compounded rate rc can be used to find (uniquely for any m) rm such that
1 $ invested at m-compounding corresponds to 1 $ invested at continuous
compounding, i.e. (

1 +
rm
m

)m
= erc.

This means that in order to avoid confusion – even in discrete models –
there is much to be said in favor of quoting interest rates on a continuously
compounded basis. But then again, in the highly stylized discrete models
it would be pretty artificial, so we will not do it (rather it will always be
m = 1).
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annuity
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3.3 Annuities, serial loans and bullet bonds

Typically, zero-coupon bonds do not trade in financial markets and one there-
fore has to deduce prices of zero-coupon bonds from other types of bonds
trading in the market. Three of the most common types of bonds which do
trade in most bond markets are annuities, serial loans and bullet bonds. (In
literature relating to the American market, “bond” is usually understood to
mean “bullet bond with 2 yearly payments”. Further, “bills” are term short
bonds, annuities explicitly referred to as such, and serial loans rare.) We
now show how knowing to which of these three types a bond belongs and
knowing three characteristics, namely the maturity, the principal and the
coupon rate, will enable us to determine the bond’s cash flow completely.

Let the principal or face value of the bond be denoted F. Payments on the
bond start at date 1 and continue to the time of the bond’s maturity, which
we denote τ . The payments are denoted ct. We think of the principal of a
bond with coupon rate R and payments c1, . . . , cτ as satisfying the following
difference equation:

pt = (1 +R)pt−1 − ct t = 1, . . . , τ , (3.2)

with the boundary conditions p0 = F and pτ = 0.
Think of pt as the remaining principal right after a payment at date

t has been made. For accounting and tax purposes and also as a helpful tool
in designing particular types of bonds, it is useful to split payments into a
part which serves as reduction of principal and one part which is seen as an
interest payment. We define the reduction in principal at date t as

δt = pt−1 − pt

and the interest payment as

it = Rpt−1 = ct − δt.

Definition 11 An annuity with maturity τ , principal F and coupon rate R
is a bond whose payments are constant between dates 1 and τ , and whose
principal evolves according to Equation (3.2).

With constant payments we can use (3.2) repeatedly to write the remain-
ing principal at time t as

pt = (1 +R)tF − c
t−1∑

j=0

(1 +R)j for t = 1, 2, . . . , τ .
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alfahage; $“alpha
˙n“rceil R $

To satisfy the boundary condition pτ = 0 we must therefore have

F − c
τ−1∑

j=0

(1 +R)j−τ = 0,

so by using the well-known formula
∑n−1

i=0 x
i = (xn − 1)/(x − 1) for the

summation of a geometric series, we get

c = F

(
τ−1∑

j=0

(1 +R)j−τ

)−1

= F
R(1 +R)τ

(1 +R)τ − 1
= F

R

1 − (1 +R)−τ
.

Note that the size of the payment is homogeneous (of degree 1) in the prin-
cipal, so it’s usually enough to look at the F = 1. (This rather trivial obser-
vation can in fact be extremely useful in a dynamic context.) It is common
to use the shorthand notation

αneR = (“Alfahage”) =
(1 +R)n − 1

R(1 +R)n
.

Having found what the size of the payment must be we may derive the
interest and the deduction of principal as well: Let us calculate the size of
the payments and see how they split into deduction of principal and interest
payments. First, we derive an expression for the remaining principal:

pt = (1 +R)tF − F

ατeR

t−1∑

j=0

(1 +R)j

=
F

ατeR

(
(1 +R)tατeR − (1 +R)t − 1

R

)

=
F

ατeR

(
(1 +R)τ − 1

R(1 +R)τ−t
− (1 +R)τ − (1 +R)τ−t

R(1 +R)τ−t

)

=
F

ατeR
ατ−teR.

This gives us the interest payment and the deduction immediately for the
annuity:

it = R
F

ατeR
ατ−t+1eR

δt =
F

ατeR
(1 − Rατ−t+1eR).

In the definition of an annuity, the size of the payments is implicitly
defined. The definitions of bullets and serials are more direct.



20 CHAPTER 3. PAYMENT STREAMS UNDER CERTAINTY

bullet bond

serial loan
Definition 12 A bullet bond1 with maturity τ , principal F and coupon rate
R is characterized by having it = ct for t = 1, . . . , τ − 1 and cτ = (1 +R)F.

The fact that we have no reduction in principal before τ forces us to have
ct = RF for all t < τ.

Definition 13 A serial loan or bond with maturity τ , principal F and coupon
rate R is characterized by having δt, constant for all t = 1, . . . , τ .

Since the deduction in principal is constant every period and we must have
pτ = 0, it is clear that δt = F

τ
for t = 1, . . . , τ . From this it is straightforward

to calculate the interest using it = Rpt−1.

We summarize the characteristics of the three types of bonds in the table
below:

payment interest deduction of principal
Annuity Fα−1

τeR R F
ατeR

ατ−t+1eR
F

ατeR
(1 − Rατ−t+1eR)

Bullet
RF for t < τ
(1 +R)F for t = τ

RF
0 for t < τ
F for t = τ

Serial F
τ

+R
(
F − t−1

τ
F
)

R
(
F − t−1

τ
F
)

F
τ

Example 4 (A Simple Bond Market) Consider the following bond mar-
ket where time is measured in years and where payments are made at dates
{0, 1, . . . , 4}:

Bond (i) Coupon rate (Ri) Price at time 0 (πi(0))
1 yr bullet 5 100.00
2 yr bullet 5 99.10

3 yr annuity 6 100.65
4 yr serial 7 102.38

We are interested in finding the zero-coupon prices/yields in this market.
First we have to determine the payment streams of the bonds that are traded
(the C-matrix). Since α3e6 = 2.6730 we find that

C =




105 0 0
5 105 0 0

37.41 37.41 37.41 0
32 30.25 28.5 26.75




1In Danish: Et st̊aende l̊an
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clean priceClearly this matrix is invertible so et = C>θt has a unique solution for all
t ∈ {1, . . . , 4} (namely θt = (C>)−1et). If the resulting t-zero-coupon bond
prices, dt(0) = π(0) · θt, are strictly positive then there is no arbitrage.
Performing the inversion and the matrix multiplications we find that

(d1(0), d2(0), d3(0), d4(0))> = (0.952381, 0.898458, 0.839618, 0.7774332),

or alternatively the following zero-coupon yields

100 ∗ (y(0, 1), y(0, 2), y(0, 3), y(0, 4))> = (5.00, 5.50, 6.00, 6.50).

Now suppose that somebody introduces a 4 yr annuity with a coupon rate
of 5 % . Since α4e5 = 3.5459 this bond has a unique arbitrage-free price of

π5(0) =
100

3.5459
(0.952381 + 0.898458 + 0.839618 + 0.7774332) = 97.80.

Notice that bond prices are always quoted per 100 units (e.g. $ or DKK) of
principal. This means that if we assume the yield curve is the same at time
1 the price of the serial bond would be quoted as

π4(1) =
d1:3(0) · C4,2:4

0.75
=

76.87536

0.75
= 102.50

(where d1:3(0) means the first 3 entries of d(0) and C4,2:4 means the entries 2
to 4 in row 4 of C).

Example 5 (Reading the financial pages) This example gives concrete
calculations for a specific Danish Government bond traded at the Copen-
hagen Stock Exchange(CSX): A bullet bond with a 4 % coupon rate and
yearly coupon payments that matures on January 1 2010. Around February
1 2005 you could read the following on the CSX homepage or on the financial
pages of decent newspapers

Bond type Current date Maturity date Price Yield
4% bullet February 1 2005 January 1 2010 104.02 3.10 %

Let us see how the yield was calculated. First, we need to set up the cash-flow
stream that results from buying the bond. The first cash-flow, π in the sense
of Definition 8 would take place today. (Actually it wouldn’t, even these days
trades take a couple of day to be in effect; valør in Danish. We don’t care
here.) And how large is it? By convention, and reasonably so, the buyer has
to pay the price (104.02; this is called the clean price) plus compensate the
seller of the bond for the accrued interest over the period from January 1 to
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dirty price February 1, ie. for 1 month, which we take to mean 1/12 of a year. (This is
not as trivial as it seems. In practice there are a lot of finer - and extremely
boring - points about how days are counted and fractions calculated. Suffice
it to say that mostly actual days are used in Denmark.) By definition the
buyer has to pay accrued interest of “coupon × year-fraction”, ie. 4 × 1/12
= 0.333, so the total payment (called the dirty price) is π = 104.35. So now
we can write down the cash-flows and verify the yield calculation:

Date tk Cash-flow (ck) dk = (1 + 0.0310)−tk PV= dk ∗ ck
Feb. 1 2005 0 - 104.35 1
Jan. 1 2006 11

12
4 0.9724 3.890

Jan. 1 2007 1 11
12

4 0.9432 3.772
Jan. 1 2008 2 11

12
4 0.9148 3.660

Jan. 1 2009 3 11
12

4 0.8873 3.549
Jan. 1 2010 4 11

12
104 0.8606 89.505

SUM = 104.38

(The match, 104.35 vs. 104.38 isn’t perfect. But to 3 significant digits 0.0310
is the best solution, and anything else can be attributed to out rough ap-
proach to exact dates.)

Example 6 (Finding the yield curve) In early February you could find
prices 4%-coupon rate bullet bonds with a range of different maturities (all
maturities fall on January firsts):

Maturity year 2006 2007 2008 2009 2010
Clean price 101.46 102.69 103.43 103.88 104.02

Maturity year 2011 2012 2013 2014 2015
Clean price 103.80 103.50 103.12 102.45 102.08

These bonds (with names like 4%10DsINKx) are used for the construction of
private home-owners variable/floating rate loans such as “FlexL̊an”. (Hey!
How does the interest rate get floating? Well, it does if you (completely)
refinance your 30-year loan every year or every 5 years with shorter maturity
bonds.) In many practical contexts these are not the right bonds to use;
yield curves “should” be inferred from government bonds. (Of course this
statement makes no sense within our modelling framework.)
Dirty prices, these play the role of π, are found as in Example 5, and the (10
by 10) C-matrix has the form

Ci,j =





4 if j < i
104 if j = i
0 if j > i
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Figure 3.1: The term structure of interest rates in Denmark, February 2005.
The o’s are the points we have actually calculated, the rest is just linear
interpolation.

The system Cd = π has the positive (∼ no arbitrage) unique (∼ complete-
ness) solution

d = (0.9788, 0.9530, 0.9234, 0.8922, 0.8593, 0.8241, 0.789, 50.7555, 0.7200, 0.6888)> .

and that corresponds to these (yearly compounded) zero coupon yields:

Maturity 0.92 1.92 2.92 3.92 4.92 5.92 6.92 7.92 8.92 9.92
ZC yield in % 2.37 2.55 2.77 2.95 3.13 3.32 3.48 3.61 3.75 3.83

as depicted in Figure 3.1.

Example 7 The following example is meant to illustrate the perils of relying
too much on yields. Especially if they are used incorrectly! The numbers
are taken from Jakobsen and Tanggaard.2 Consider the following small bond

2Jakobsen, S. and C. Tanggard: Faldgruber i brugen af effektiv rente og varighed,
finans/invest, 2/87.
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market:

Bond (i) 100*Coupon rate (Ri) Price at time 0 (πi(0)) 100*Yield
1 yr bullet 10 100.00 10.00
2 yr bullet 10 98.4 10.93
3 yr bullet 10 95.5 11.87
4 yr bullet 10 91.8 12.74
5 yr bullet 10 87.6 13.58
5 yr serial 10 95.4 11.98

Now consider a portfolio manager with the following argument: “Let us sell
1 of each of the bullet bonds and use the money to buy the serial bond. The
weighted yield on our liabilities (the bonds sold) is

100 ∗ 10 + 98.4 ∗ 10.93 + 95.5 ∗ 11.87 + 91.8 ∗ 12.74 + 87.6 ∗ 13.58

100 + 98.4 + 95.5 + 91.8 + 87.6
= 11.76%,

while the yield on our assets (the bond we bought) is 11.98%. So we just sit
back and take a yield gain of 0.22%.” But let us look for a minute at the
cash-flows from this arrangement (Note that one serial bond has payments
(30, 28, 26, 24, 22) and that we can buy 473.3/95.4 = 4.9612 serial bonds for
the money we raise.)

Time 0 1 2 3 4 5
Liabilities
1 yr bullet 100 -110 0 0 0 0
2 yr bullet 98.4 -10 -110 0 0 0
3 yr bullet 95.5 -10 -10 -110 0 0
4 yr bullet 91.8 -10 -10 -10 -110 0
5 yr bullet 87.6 -10 -10 -10 -10 -110

Assets
5 yr serial -473.3 148.84 138.91 128.99 119.07 109.15

Net position
0 -1.26 -1.19 -1.01 -0.93 -0.75

So we see that what have in fact found is a sure-fire way of throwing money
away. So what went wrong? The yield on the liability side is not 11.76%. The
yield of a portfolio is a non-linear function of all payments of the portfolio,
and it is not a simple function (such as a weighted average) of the yields of
the individual components of the portfolio. The correct calculation gives that
the yield on the liabilities is 12.29%. This suggests that we should perform
the exact opposite transactions. And we should, since from the table of cash-
flow we see that this is an arbitrage-opportunity (“a free lunch”). But how
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capital
budgeting

internal rate of
return

net present value,
NPV

can we be sure to find such arbitrages? By performing an analysis similar to
that in Example 4, i.e. pick out a sufficient number of bonds to construct
zero-coupon bonds and check if all other bonds are priced correctly. If not
it is easy to see how the arbitrage-opportunities are exploited. If we pick
out the 5 bullets and do this, we find that the correct price of the serial is
94.7, which is confirmation that arbitrage-opportunities exists in the market.
Note that we do not have to worry if it is the serial that is overpriced or the
bullets that are underpriced.
Of course things are not a simple in practice as in this example. Market
imperfections (such as bid-ask spreads) and the fact that there are more
payments dates the bonds make it a challenging empirical task to estimate
the zero-coupon yield curve. Nonetheless the idea of finding the zero-coupon
yield curve and using it to find over- and underpriced bonds did work wonders
in the Danish bond market in the ’80ies (the 1980’ies, that is).

3.4 IRR, NPV and capital budgeting under

certainty.

The definition of internal rate of return (IRR) is the same as that of yield,
but we use it on arbitrary cash flows, i.e. on securities which may have
negative cash flows as well:

Definition 14 An internal rate of return of a security (c1, . . . , cT ) with price
π 6= 0 is a solution y > −1 of the equation

π =
T∑

i=1

ci
(1 + y)i

.

Hence the definitions of yield and internal rate of return are identical for
positive cash flows. It is easy to see that for securities whose future payments
are both positive and negative we may have several IRRs. This is one reason
that one should be very careful interpreting and using this measure at all
when comparing cash flows. We will see below that there are even more
serious reasons. When judging whether a certain cash flow is ’attractive’ the
correct measure to use is net present value:

Definition 15 The PV and NPV of security (c1, . . . , cT ) with price c0 given
a term structure (y(0, 1), . . . , y(0, T )) are defined as

PV (c) =

T∑

i=1

ci
(1 + y(0, i))i
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NPV criterion
NPV (c) =

T∑

i=1

ci
(1 + y(0, i))i

− c0

Next, we will see how these concepts are used in deciding how to invest under
certainty.

Assume throughout this section that we have a complete security market
as defined in the previous section. Hence a unique discount function d is
given as well as the associated concepts of interest rates and yields.We let
y denote the term structure of interest rates and use the short hand notation
yi for y(0, i).

In capital budgeting we analyze how firms should invest in projects whose
payoffs are represented by cash flows. Whereas we assumed in the security
market model that a given security could be bought or sold in any quantity
desired, we will use the term project more restrictively: We will say that the
project is scalable by a factor λ 6= 1 if it is possible to start a project which
produces the cash flow λc by paying λc0 initially. A project is not scalable
unless we state this explicitly and we will not consider any negative scaling.

In a complete financial market an investor who needs to decide on only
one project faces a very simple decision: Accept the project if and only if
it has positive NPV. We will see why this is shortly. Accepting this fact
we will see examples of some other criteria which are generally inconsistent
with the NPV criterion. We will also note that when a collection of projects
are available capital budgeting becomes a problem of maximizing NPV over
the range of available projects. The complexity of the problem arises from
the constraints that we impose on the projects. The available projects may
be non-scalable or scalable up to a certain point, they may be mutually
exclusive (i.e. starting one project excludes starting another), we may impose
restrictions on the initial outlay that we will allow the investor to make
(representing limited access to borrowing in the financial market), we may
assume that a project may be repeated once it is finished and so on. In all
cases our objective is simple: Maximize NPV.

First, let us note why looking at NPV is a sensible thing to do:

Proposition 5 Given a cash flow c = (c1, . . . , cT ) and given c0 such that
NPV (c0; c) < 0. Then there exists a portfolio θ of securities whose price is
c0 and whose payoff satisfies

C>θ >




c1
...
cT


 .
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Conversely, if NPV (c0; c) > 0, then every θ with C> θ = c satisfies π>θ > c0.

Proof. Since the security market is complete, there exists a portfolio θc such
that C>θc = c. Now π>θc < c0 (why?), hence we may form a new portfolio by
investing the amount c0 − π>θc in some zero coupon bond (e1, say) and also

invest in θc. This generates a stream of payments equal to C>θc+ (c0−π>θc)
d1

e1 >
c and the cost is c0 by construction.
The second part is left as an exercise.

The interpretation of this lemma is the following: One should never accept
a project with negative NPV since a strictly larger cash flow can be obtained
at the same initial cost by trading in the capital market. On the other hand,
a positive NPV project generates a cash flow at a lower cost than the cost
of generating the same cash flow in the capital market. It might seem that
this generates an arbitrage opportunity since we could buy the project and
sell the corresponding future cash flow in the capital market generating a
profit at time 0. However, we insist on relating the term arbitrage to the
capital market only. Projects should be thought of as ’endowments’: Firms
have an available range of projects. By choosing the right projects the firms
maximize the value of these ’endowments’.

Some times when performing NPV-calculations, we assume that ’the term
structure is flat’ . What this means is that the discount function has the
particularly simple form

dt =
1

(1 + r)t

for some constant r, which we will usually assume to be non-negative, al-
though our model only guarantees that r > −1 in an arbitrage-free market.
A flat term structure is very rarely observed in practice - a typical real world
term structure will be upward sloping: Yields on long maturity zero coupon
bonds will be greater than yields on short bonds. Reasons for this will be
discussed once we model the term structure and its evolution over time -
a task which requires the introduction of uncertainty to be of any interest.
When the term structure is flat then evaluating the NPV of a project having
a constant cash flow is easily done by summing the geometric series. The
present value of n payments starting at date 1, ending at date n each of size
c, is

n∑

i=1

cdi = cd

n−1∑

i=0

di = cd
1 − dn

1 − d
, d 6= 1



28 CHAPTER 3. PAYMENT STREAMS UNDER CERTAINTY

Gordon’s growth
formula

capital budgeting

Another classical formula concerns the present value of a geometrically grow-
ing payment stream (c, c(1 + g), . . . , c(1 + g)n−1) as

n∑

i=1

c
(1 + g)i−1

(1 + r)i

=
c

1 + r

n−1∑

i=0

(1 + g)i

(1 + r)i

=
c

r − g

(
1 −

(
1 + g

1 + r

)n)
.

Although we have not taken into account the possibility of infinite payment
streams, we note for future reference, that for 0 ≤ g < r we have what is
known as Gordon’s growth formula:

∞∑

i=1

c(1 + g)i−1

(1 + r)i
=

c

r − g
.

3.4.1 Some rules that are inconsistent with the NPV

rule.

Corresponding to our definition of internal rate of return in Chapter 3, we
define an internal rate of return on a project c with initial cost c0 > 0,
denoted IRR(c0; c), as a solution to the equation

c0 =

T∑

i=1

ci
(1 + x)i

, x > −1

As we have noted earlier such a solution need not be unique unless c > 0
and c0 > 0.

Note that an internal rate of return is defined without referring to the
underlying term structure. The internal rate of return describes the level of a
flat term structure at which the NPV of the project is 0. The idea behind its
use in capital budgeting would t hen be to say that the higher the level of the
interest rate, the better the project (and some sort of comparison with the
existing term structure would then be appropriate when deciding whether to
accept the project at all). But as we will see in the following example, IRR
and NPV may disagree on which project is better: Consider the projects
shown in the table below (whose last column shows a discount function d):
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date proj 1 proj 2 d
0 -100 -100 1
1 50 50 0.95
2 5 80 0.85
3 90 4 0.75

IRR 0.184 0.197 -
NPV 19.3 18.5 -

Project 2 has a higher IRR than project 1, but 1 has a larger NPV than
2. Using the same argument as in the previous section it is easy to check,
that even if a cash flow similar to that of project 2 is desired by an investor,
he would be better off investing in project 1 and then reforming the flow of
payments using the capital market.

Another problem with trying to use IRR as a decision variable arises when
the IRR is not uniquely defined - something which typically happens when
the cash flows exhibit sign changes. Which IRR should we then choose?

One might also contemplate using the payback method and count the
number of years it takes to recover the initial cash outlay - possibly after
discounting appropriately the future cash flows. Project 2 in the table has
a payback of 2 years whereas project 1 has a payback of three years. The
example above therefore also shows that choosing projects with the shortest
payback time may be inconsistent with the NPV method.

3.4.2 Several projects

Consider someone with c0 > 0 available at date 0 who wishes to allocate
this capital over the T + 1 dates, and who considers a project c with initial
cost c0. We have seen that precisely when NPV (c0; c) > 0 this person will
be able to obtain better cash flows by adopting c and trading in the capital
market than by trading in the capital market alone.

When there are several projects available the situation really does not
change much: Think of the i′th project (pi0, p) as an element of a set Pi ⊂
R
T+1. Assume that 0 ∈ Pi all i representing the choice of not starting the

i’th project. For a non-scalable project this set will consist of one point in
addition to 0.

Given a collection of projects represented by (Pi)i∈I . Situations where
there is a limited amount of money to invest at the beginning (and borrow-
ing is not permitted), where projects are mutually exclusive etc. may then
be described abstractly by the requirement that the collection of selected
projects (pi0, p

i)i∈I are chosen from a feasible subset P of the Cartesian prod-
uct ×i∈IPi. The NPV of the chosen collection of projects is then just the sum
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of the NPVs of the individual projects and this in turn may be written as
the NPV of the sum of the projects:

∑

i∈I
NPV (pi0; p

i) = NPV

(
∑

i∈I
(pi0, p

i)

)
.

Hence we may think of the chosen collection of projects as producing one
project and we can use the result of the previous section to note that clearly
an investor should choose a project giving the highest NPV. In practice, the
maximization over feasible “artificial” may not be easy at all.

Let us look at an example from Copeland and Weston (1988): .

Example 8 Consider the following 4 projects

project NPV initial cost
1 30.000 200.000
2 16.250 125.000
3 19.250 175.000
4 12.000 150.000

Assume that all projects are non-scalable, and assume that we can only invest
up to an amount of 300.000. This capital constraint forces us to choose,
i.e. projects become mutually exclusive to some extent. Clearly, with no
constraints all projects would be adopted since the NPVs are positive in all
cases. Note that project 1 generates the largest NPV but it also uses a large
portion of the budget: If we adopt 1, there is no room for additional projects.
The only way to deal with this problem is to stick to the NPV-rule and go
through the set of feasible combinations of projects and compute the NPV.
It is not hard to see that combining projects 2 and 3 produces the maximal
NPV given the capital constraint. If the projects were assumed scalable, the
situation would be different: Then project 1 adopted at a scale of 1.5 would
clearly be optimal. This is simply because the amount of NPV generated per
dollar invested is larger for project 1 than for the other projects. Exercises
will illustrate other examples of NPV-maximization.

The moral of this section is simple: Given a perfect capital market, in-
vestors who are offered projects should simply maximize NPV. This is merely
an equivalent way of saying that profit maximization with respect to the ex-
isting price system (as represented by the term structure) is the appropriate
strategy when a perfect capital market exists. The technical difficulties arise
from the constraints that we impose on the projects and these constraints
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easily lead to linear programming problems, integer programming problems
or even non-linear optimization problems.

However, real world projects typically do not generate cash flows which
are known in advance. Real world projects involve risk and uncertainty and
therefore capital budgeting under certainty is really not sophisticated enough
for a manager deciding which projects to undertake. A key objective of this
course is to try and model uncertainty and to construct models of how risky
cash flows are priced. This will give us definitions of NPV which work for
uncertain cash flows as well.

3.5 Duration, convexity and immunization.

3.5.1 Duration with a flat term structure.

In this chapter we introduce the notions of duration and convexity which are
often used in practical bond risk management and asset/liability manage-
ment. It is worth stressing that when we introduce dynamic models of the
term structure of interest rates in a world with uncertainty, we obtain much
more sophisticated methods for measuring and controlling interest rate risk
than the ones presented in this section.

Consider an arbitrage-free and complete financial market where the dis-
count function d = (d1, . . . dT ) satisfies

di =
1

(1 + r)i
for i = 1, . . . , T.

This corresponds to the assumption of a flat term structure. We stress that
this assumption is rarely satisfied in practice but we will see how to relax
this assumption.

What we are about to investigate are changes in present values as a
function of changes in r.. We will speak freely of ’interest changes’ occurring
even though strictly speaking, we still do not have uncertainty in our model.

With a flat term structure, the present value of a payment stream c =
(c1, . . . , cT ) is given by

PV (c; r) =

T∑

t=1

ct
(1 + r)t

We have now included the dependence on r explicitly in our notation since
what we are about to model are essentially derivatives of PV (c; r) with re-
spect to r.
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duration,
Macaulay

convexity

Definition 16 Let c be a non-negative payment stream. The Macaulay du-
ration D(c; r) of c is given by

D(c; r) =

(
− ∂

∂r
PV (c; r)

)
1 + r

PV (c; r)
(3.3)

=
1

PV (c; r)

T∑

t=1

t
ct

(1 + r)t

The Macaulay duration and is the classical one (many more advanced dura-
tions have been proposed in the literature). Note that rather than saying it
is based on a flat term structure, we could refer to it as being based on the
yield of the bond (or portfolio).

If we define

wt =
ct

(1 + r)t
1

PV (c; r)
, (3.4)

then we have
∑T

t=1 wt = 1, hence

D(c; r) =

T∑

t=1

t wt.

Definition 17 The convexity of c is given by

K(c; r) =

T∑

t=1

t2 wt. (3.5)

where wt is given by (3.4).

Let us try to interpret D and K by computing the first and second deriva-
tives3 of PV (c; r) with respect to r.

PV ′(c; r) = −
T∑

t=1

t ct
1

(1 + r)t+1

= − 1

1 + r

T∑

t=1

t ct
1

(1 + r)t

PV ′′(c; r) =
T∑

t=1

t (t+ 1)
ct

(1 + r)t+2

=
1

(1 + r)2

[
T∑

t=1

t2ct
1

(1 + r)t
+

T∑

t=1

tct
1

(1 + r)t

]

3From now on we write PV ′(c; r) and PV ′′(c; r) instead of ∂

∂r
PV (c; r) resp. ∂

2

∂r2 PV (c; r)
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duration,
modified

Now consider the relative change in PV (c; r) when r changes to r + ∆r, i.e.

PV (c; r + ∆r) − PV (c; r)

PV (c; r)

By considering a second order Taylor expansion of the numerator, we obtain

PV (c; r + ∆r) − PV (c; r)

PV (c; r)
≈ PV ′(c; r)∆r + 1

2
PV ′′(c; r)(∆r)2

PV (c; r)

= −D ∆r

(1 + r)
+

1

2
(K +D)

(
∆r

1 + r

)2

Hence D and K can be used to approximate the relative change in
PV (c; r) as a function of the relative change in r (or more precisely, rela-

tive changes in 1 + r, since ∆(1+r)
1+r

= ∆r
1+r

).
Sometimes one finds the expression modified duration defined by

MD(c; r) =
D

1 + r

and using this in a first order approximation, we get the relative change in
PV (c; r) expressed by −MD(c; r)∆r, which is a function of ∆r itself. The
interpretation of D as a price elasticity gives us no reasonable explanation of
the word ’duration’, which certainly leads one to think of quantity measured
in units of time. If we use the definition of wt we have the following simple
expression for the duration:

D(c; r) =
T∑

t=1

t wt.

Notice that wt expresses the present value of ct divided by the total present
value, i.e. wt expresses the weight by which ct is contributing to the total
present value. Since

∑T
t=1 wt = 1 we see that D(c; r) may be interpreted as

a ’mean waiting time’. The payment which occurs at time t is weighted by
wt.

Example 9 For the bullet bond in Example 5 the present value of the
payment stream is 104.35 and y = 0.0310, so therefore the Macaulay duration
is ∑4

k=1 tkck(1 + y)−tk

PV
=

475.43

104.35
= 4.556

while the convexity is
∑4

k=1 t
2
kck(1 + y)−tk

PV
=

2266.35

104.35
= 21.72,
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and the following table shows the the exact and approximated relative chances
in present value when the yield changes:

Yield 4yield Exact rel. (%) First order Second order
PV-change approximation approximation

0.021 -0.010 4.57 4.42 4.54
0.026 -0.005 2.27 2.21 2.24
0.031 0 0 0 0
0.036 0.005 -2.15 -2.21 -2.18
0.041 0.010 -4.27 -4.42 - 4.30

Notice that since PV is a decreasing, convex function of y we know that the
first order approximation will underestimate the effect of decreasing y (and
overestimate the effect of increasing it).

Notice that for a zero coupon bond with time to maturity t the duration
is t. For other kinds of bonds with time to maturity t, the duration is less
than t. Furthermore, note that investing in a zero coupon bond with yield
to maturity r and holding the bond to expiration guarantees the owner an
annual return of r between time 0 and time t. This is not true of a bond
with maturity t which pays coupons before t. For such a bond the duration
has an interpretation as the length of time for which the bond can ensure an
annual return of r :

Let FV (c; r,H) denote the (future) value of the payment stream c at time
H if the interest rate is fixed at level r. Then

FV (c; r,H) = (1 + r)HPV (c; r)

=
H−1∑

t=1

ct(1 + r)H−t + cH +
T∑

t=H+1

ct
1

(1 + r)t−H

Consider a change in r which occurs an instant after time 0. How would
such a change affect FV (c; r,H)? There are two effects with opposite direc-
tions which influence the future value: Assume that r decreases. Then the
first sum in the expression for FV (c; r,H) will decrease. This decrease can
be seen as caused by reinvestment risk: The coupons received up to time H
will have to be reinvested at a lower level of interest rates. The last sum will
increase when r decreases. This is due to price risk : As interest rates fall
the value of the remaining payments after H will be higher since they have
to be discounted by a smaller factor. Only cH is unchanged.

The natural question to ask then is for which H these two effects cancel
each other. At such a time point we must have ∂

∂r
FV (c; r,H) = 0 since an

infinitesimal change in r should have no effect on the future value. Now,
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immunization

∂

∂r
FV (c; r,H) =

∂

∂r

[
(1 + r)HPV (c; r)

]

= H(1 + r)H−1PV (c; r) + (1 + r)HPV ′(c; r)

Setting this expression equal to 0 gives us

H =
−PV ′(c; r)

PV (c; r)
(1 + r)

i.e. H = D(c; r)

Furthermore, at H = D(c; r), we have ∂2

∂r2
FV (c; r,H) > 0. This you can

check by computing ∂2

∂r2

(
(1 + r)HPV (c; r)

)
,reexpressing in terms D and K,

and using the fact that K > D2. Hence, at H = D(c; r), FV (c; r,H) will have
a minimum in r. We say that FV (c; r,H) is immunized towards changes in r,
but we have to interpret this expression with caution: The only way a bond
really can be immunized towards changes in the interest rate r between time
0 and the investment horizon t is by buying zero coupon bonds with maturity
t. Whenever we buy a coupon bond at time 0 with duration t, then to a first
order approximation, an interest change immediately after time 0, will leave
the future value at time t unchanged. However, as date 1 is reached (say)
it will not be the case that the duration of the coupon bond has decreased
to t − 1. As time passes, it is generally necessary to adjust bond portfolios
to maintain a fixed investment horizon, even if r is unchanged. This is true
even in the case of certainty.

Later when we introduce dynamic hedging strategies we will see how a
portfolio of bonds can be dynamically managed so as to truly immunize the
return.

3.5.2 Relaxing the assumption of a flat term structure.

What we have considered above were parallel changes in a flat term structure.
Since we rarely observe this in practice, it is natural to try and generalize
the analysis to different shapes of the term structure. Consider a family of
structures given by a function r of two variables, t and x. Holding x fixed
gives a term structure r(·, x).

For example, given a current term structure (y1, . . . , yT ) we could have
r(t, x) = yt + x in which case changes in x correspond to additive changes
in the current term structure (the one corresponding to x = 0). Or we could
have 1+ r(t, x) = (1+ yt)x, in which case changes in x would produce multi-
plicative changes in the current (obtained by letting x = 1) term structure.
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duration Now let us compute changes in present values as x changes:

∂PV

∂x
= −

T∑

t=1

tct
1

(1 + r(t, x))t+1

∂r(t, x)

∂x

which gives us

∂PV

∂x

1

PV
= −

T∑

t=1

twt
1 + r(t, x)

∂r(t, x)

∂x

where

wt =
ct

(1 + r(t, x))t
1

PV

We want to try and generalize the ’investment horizon’ interpretation of
duration, and hence calculate the future value of the payment stream at
time H and differentiate with respect to x. Assume that the current term
structure is r(·, x0).

FV (c; r(H, x0), H) = (1 + r(H, x0))
HPV (c; r(t, x0))

Differentiating we get

∂

∂x
FV (c; r(H, x), H) = (1 + r(H, x))H

∂PV

∂x

+H(1 + r(H, x))H−1∂r(H, x)

∂x
PV (c; r(t, x))

Evaluate this derivative at x = x0 and set it equal to 0 :

∂PV

∂x

∣∣∣∣
x=x0

1

PV
= −H ∂r(H, x)

∂x

∣∣∣∣
x=x0

(1 + r(H, x0))
−1

and hence we could define the duration corresponding to the given parametriza-
tion as the value D for which

∂PV

∂x

∣∣∣∣
x=x0

1

PV
= −D ∂r(D, x)

∂x

∣∣∣∣
x=x0

(1 + r(D, x0))
−1.

The additive case would correspond to

∂r(D, x)

∂x

∣∣∣∣
x=0

= 1,

and the multiplicative case to

∂r(D, x)

∂x

∣∣∣∣
x=1

= 1 + yD.
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duration,
Fisher-Weil

barbell strategy

Note that the multiplicative case gives us the duration measure (called the
Fisher-Weil duration)

Dmult = −∂PV
∂x

1

PV
=

T∑

t=1

twt

which is just like the original measure although the weights of course reflect
the structure y(0, t).

Example 10 (Macaulay vs. Fisher-Weil) Consider again the small bond
market from Example 4. We have already found the zero-coupon yields in
the market, and find that the Fisher-Weil duration of the 4 yr serial bond is

1

102.38

(
32

1.0500
+

2 ∗ 30.25

1.05502
+

3 ∗ 28.5

1.06003
+

4 ∗ 26.75

1.06504

)
= 2.342,

and the following table gives the yields, Macaulay durations based on yields
and Fisher-Weil durations for all the coupon bonds:

Bond Yield ( ) M-duration FW-duration
1 yr bullet 5 1 1
2 yr bullet 5.49 1.952 1.952

3 yr annuity 5.65 1.963 1.958
4 yr serial 5.93 2.354 2.342

So not much difference.
Similarly, the Fisher-Weil duration of the bullet bond from Examples 5, 6
and 9 is 4.552, whereas its Macaulay duration was 4.556.

3.5.3 The Barbell: Messing with your head

We finish this chapter with an example (with something usually referred to
as a barbell strategy) which is intended to cause some concern. Some of the
claims are for you to check!

A financial institution issues 100 million $ worth of 10 year bullet bonds
with time to maturity 10 years and a coupon rate of 7 percent. Assume that
the term structure is flat at r = 7 percent. The revenue (of 100 million $) is
used to purchase 10-and 20 year annuities also with coupon rates of 7%. The
numbers of the 10 and 20 year annuities purchased are chosen in such a way
that the duration of the issued bullet bond matches that of the portfolio of
annuities. Now there are three facts you need to know at this stage. Letting
T denote time to maturity, r the level of the term structure and γ the coupon
rate, we have that the duration of an annuity is given by
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Dann =
1 + r

r
− T

(1 + r)T − 1
.

Note that since payments on an annuity are equal in all periods we need not
know the size of the payments to calculate the duration.

The duration of a bullet bond is

Dbullet =
1 + r

r
− 1 + r − T (r − R)

R ((1 + r)T − 1) + r

which of course simplifies when r = R.
The third fact you need to check is that if a portfolio consists of two

securities whose values are P1 and P2 respectively, then the duration of the
portfolio P1 + P2 is given as

D(P1 + P2 ) =
P1

P1 + P2
D(P1) +

P2

P1 + P2
D(P2).

Using these three facts you will note that a portfolio consisting of 23.77
million dollars worth of the 10-year annuity and 76.23 million dollars worth of
the 20-year annuity will produce a portfolio whose duration exactly matches
that of the issued bullet bond. By construction the present value of the two
annuities equals that of the bullet bond. The present value of the whole
transaction in other words is 0 at an interest level of 7 percent. However,
for all other levels of the interest rate, the present value is strictly positive!
In other words, any change away from 7 percent will produce a profit to the
financial institution. We will have more to say about this phenomenon in
the exercises and we will return to it when discussing the term structure of
interest rates in models with uncertainty. As you will see then, the reason
that we can construct the example above is that we have set up an economy
in which there are arbitrage opportunities.


