Exercise Set 4 - Arbitrage Pricing Theory*

Corporate Finance and Incentives - Fall 2008

Problem 1

a Express the APT in two ways. First using the factors them selves, then using factor risk premia.
b The APT framework relies on the assumption that we can construct so called pure factor portfolios. Explain what a pure factor portfolio is and what conditions for the error terms must be met for us to be able to apply the no-arbitrage argument.
c Explain how we can replicate any asset using pure factor portfolios and use a no-arbitrage argument to justify the APT.
d In general there are two ways of pricing securities. We either use a market equilibrium argument or a no-arbitrage argument. Describe the relationship between the CAPM and the APT and explain which argument underlies each of the models.
e What is the minimum number of factors needed in order to explain the expected returns of a group of 10 securities, if the securities have no firm specific risk?

Problem 2

Consider the following two factor model for the returns of three stocks. Assume that the factors and ϵ_{i} have mean 0 , that all factors have a variance of 0.01 and are uncorrelated, and that $\sigma^{2}\left[\epsilon_{a}\right]=0.01, \sigma^{2}\left[\epsilon_{b}\right]=0.04$ and $\sigma^{2}\left[\epsilon_{c}\right]=0.02$.

$$
\begin{aligned}
r_{a} & =0.13+6 F_{1}+4 F_{2}+\epsilon_{a} \\
r_{b} & =0.15+2 F_{1}+2 F_{2}+\epsilon_{b} \\
r_{c} & =0.07+5 F_{1}-1 F_{2}+\epsilon_{c}
\end{aligned}
$$

a What are the expected returns of the assets.
b Find the variance-covariance matrix of the return to the three assets.
c Construct one portfolio with $\beta_{1}=0, \beta_{2}=1$ and a portfolio with $\beta_{1}=1, \beta_{2}=0$.

[^0]d Compute the expected return and risk premia of these two portfolios.
e Finally introduce a fourth asset with the following factor equation.
\[

$$
\begin{equation*}
r_{d}=0.15+F_{1}+F_{2} \tag{1}
\end{equation*}
$$

\]

Does this give rise to an arbitrage opportunity, if we assume that the APT holds, and if so, how can we exploit this?

Problem 3

Consider a financial market with three assets, whose returns are given by.

$$
\left[\begin{array}{l}
r_{1} \\
r_{2} \\
r_{3}
\end{array}\right]=\left[\begin{array}{l}
0.275 \\
0.400 \\
0.675
\end{array}\right]+\left[\begin{array}{ll}
0.50 & 0.25 \\
0.50 & 0.50 \\
0.75 & 1.00
\end{array}\right] \cdot\left[\begin{array}{l}
F_{1} \\
F_{2}
\end{array}\right]
$$

where F_{1}, F_{2} are independent and normally distributed random variables with mean 0 and variance 1 .
a Construct a portfolio of these three assets, which gives a risk-free return.
b Now assume that in addition to the original assets there exists a risk-free asset with $r_{f}>0$. For which value of r_{0} is the exact APT fulfilled, and what are the factor risk premia in this case?
c Finally assume that $r_{f}=0.05$. How can an investor use, that APT is not satisfied to earn money with no risk?

[^0]: * Compiled by Jacob Lundbeck Serup; September 2006. Last edited by Ian Rusu and Carsten S. Nielsen; October 2008.

